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Transmission in one-dimensional channels in the heated 
electron regime 
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Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 8 June 1989 

Abstract. The transmission coefficient is calculated for electrons in a one-dimensional 
channel when a source-drain potential bias is applied. For large biases (typically greater 
than the Fermi energy of the electron gas) the transmission drops significantly from unity, 
which would be manifest in a reduced conductance, or increased resistance, as a source- 
drain field is applied. A novel form of negative differential resistance is predicted. 

1. Introduction 

The simple arguments leading to the quantisation of the one-dimensional ballistic 
resistance (Wharam et a1 1988, van Wees et a1 1988) are based on the Landauer (1981, 
1985) formula and rely on assuming tt* = 1, where tis the transmission amplitude for an 
electron wavefunction within the channel: this is typically an electrostatically defined 
constriction within an otherwise two-dimensional electron gas (see Wharam et a1 (1988) 
for the experimental device structure), Under weak biases and with degenerate carriers, 
the current is dominated by electrons near the Fermi energy, and the assumption 
that tt" = 1 is reasonable. The simple one-dimensional model that gives the quantised 
resistance has been generalised to consider the fuller two-dimensional aspects of the 
contacts on either side of the channel, and the coupling of states with different momenta 
in a direction at right angles to the constriction axis (Szafer and Stone 1988, Kirczenow 
1988). The results are qualitatively the same, except for in narrow regions over which 
the coupling is weak and the net conductance is reduced from the quantised value. The 
less-than-unity transmission is related to a mismatch of the types of wavefunction in 
the wide contact regions and the narrow constriction. In this work we describe one- 
dimensional calculations of another situation where mismatch can occur, i.e. where a 
source-drain bias results in a significant difference between the bottom of the bands on 
either side of the constriction, or equivalently the k-vectors of the electron states at the 
same energy on either side differ. 

In the first part of the calculation, the problem is set up and one obtains the con- 
tribution to the transmission current from electrons incident with different energies at 
constrictions with different lengths and source-drain biases applied. Two different 
models are considered for the potential profile within the constriction: one is based on 
a linear voltage drop, and the other uses a more complicated potential profile that has a 
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Figure 1. The potential profiles considered here, and the structure for calculating the J-V 
characteristics. 

continuous first derivative at the matching point (figure 1). This latter is important as it 
is likely to be the more applicable to real devices. The results from the former show 
some length resonance effects that are related to Jk(z )  d z  = nn within the channel, but 
these are absent in the latter model. In some actual experiments (Brown et a1 
1989), the split gate (see Thornton et a1 (1986) for details) is used to define and ultimately 
pinch off the channel, with a source-drain bias then being used to force electrons through 
the constriction. This situation can be modelled relatively easily in the case where the 
linear-potential drop is assumed (again see figure 1) by raising the potential energy floor 
in the constriction. The results demonstrate the role of quantum reflection as the source- 
drain bias increases. 

In the second part of the calculation, a sum is performed of the transmission currents 
appropriate to all electron states incident on the channel to obtain the current-voltage 
characteristics, and so extract the conductance. This shows an averaging out of the length 
resonance effects with the linear potential drop in the absence of any pinching off. The 
reduced transmission as the bias increases leads eventually to a negative differential 
resistance, some preliminary evidence of which has recently been demonstrated (Kelly 
et a1 1989, Brown et a1 1989). 

2. Linear potential drop 

Consider a one-dimensional problem in which the bottom of the conduction band is at 
zero potential for z < 0 (region I), and drops linearly (in region 11) to a value - V (V > 0 
in our notation) at a position z = L ,  and remains at this value for z > L (region 111). The 
wavefunctions for an electron of energy E incident from the left can be written as 

in region I q = exp(ikz) + r exp(-ikz) 

in region I1 

in region I11 
q = aAi(g(z - z o ) )  + /3Bi(g(z - z o ) )  

q = t exp(ik'z) 

where Ai and Bi are Airy functions, k = d(2m*E/h2),  k' = d[2m*(E + V)], zo = -E/ 
(V/L) ,  i.e. the position where the linear potential in the constriction would extrapolate 
to the energy E ,  g3 = -[2m*e(V/L)/h2] (so has the dimensions of an inverse length), 
and m* is the electron effective mass. It is a straightforward matter to equate both q and 
6 q / 6 z  and both z = 0 and L ,  and eliminate a, /3 and r from the above equations. The 
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Figure 2. (a )  The transmission coefficient for electrons of different energy incident on a 
linear potential drop over a constriction length of 0.1 pm as a function of bias. ( b )  The same 
as in (a ) ,  but with the potential floor in the channel raised by 10% of the Fermi energy. (c) 
The same as in (b ) ,  but with the potential floor raised by 90% of the Fermi energy. 

actual formulae derived and used in the calculations are included in the Appendix. The 
relative current associated with the exiting electron is given by k‘tt*/k.  We show the 
results of calculations in figure 2(a) for electrons incident with energies of 1, 5 and 
10 meV for channels of length 0.1 pm as the bias is increased from 0 to 100 mV, this last 
being a very large bias in experimental terms: results have been achieved for biases up 
to these values in samples where the Fermi energy is of order 10 meV. 

The notable features in the results are as follows. 

(i) A significant drop from unity transmission, especially for lower-energy electrons 
(i.e. those for which the ratio k’/k is the largest), even to as low as 80%. 

(ii) A set of oscillations in the transmission superimposed on the drop just described 
that are in slightly different positions for different incident energies, but that correspond 
to extra half-wavelengths of the wavefunction being fitted in along the length of the 
constriction as the bias increases: since the bias energies are rather larger than the scale 
of the incident energies, the positions of the maxima depend only weakly on the incident 
conditions. 
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Figure3. The transmission coefficient for electrons of different energy incident on a smoothly 
falling potential profile. 

(iiij At  very low biases, then tt* = 1, and the quantisation is accurate. 
(iv) When the constriction is increased to 1 pm in length, the expected differences 

emerge in the absence of scattering that we assume throughout: first for the same fields 
the transmission reduction is independent of the length of the constriction, and there 
are correspondingly more oscillations superimposed on the reduction as more extra half- 
wavelengths can be fitted in along the contriction. 

It is straightforward in this model to add a constant potential +Vo to the potential 
profile within the length of the contriction, implying a set up in the potential at z = 0, 
and a corresponding step down at z = L. The only modification to the above equations 
is a shift in zo,  and all the remaining methods of solution stay the same. In figures 2(b) 
and 2(c) the results of figure 2(a) are repeated for values Vo = 1 meV and 9 meV 
respectively. In the former case, we see a modestly increased deviation from k’tt*/k = 
1 for energies well above the barrier, but by the time Vo = 9 meV, i.e. almost equal to 
the Fermi energy, the reduction is almost total for small biases. In this model we would 
expect strong reductions in the transmission per channel. This is a crude model for the 
regime where the electrostatically defined channel is pinched off by a strong negative 
bias. 

3. Smooth potential drop 

Consider now an alternative potential profile, namely that V = 0 for z < 0 (in region I> 
as before, but now (in region 11) for z > 0 we have V ( z )  = Uo(l/cosh2(az) - 1). There 
is no region 111. This potential profile permits 99% of the potential drop over a distance 
zo such that azo = 2.99, and we use this length to define the constriction length. The 
wavefunctions for this potential, which are represented by hypergeometric functions of 
complicated arguments, are readily available (Landau and Lifshitz 1977), and again the 
relevant equations are included in the Appendix. 

We begin by repeating calculations for the case equivalent to figure 2, and the results 
are shown in figure 3. Here we obtain an even bigger reduction of the transmission 
coefficient than that encountered in figure 2(a),  but now there are no resonance effects 
associated with extra half-wavelengths. Both these results are simple to explain: the 
former related to the fact that the smooth potential allows the differences at z = 0 and 
z+ cc to be coupled more strongly, while the latter results from the absence of any 
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Figure 4. TheJ-Vcharacteristics for the case of (a), figure 2(a), (b)  figure 2(c)  and ( c )  figure 
3. 

discontinuities in the potential profile or its first derivative. Further calculations show 
that these differences are independent of the 'length' of the constriction (as defined by 
a-'). Again these results vindicate the quantisation at small biases, but show that 
deviations that lead to increased resistances are expected at larger biases. 

4. The current-voltage characteristics 

Having calculated t(Eincidenr), for different biases, it is a straightforward matter to cal- 
culate the current-voltage characteristics in the zero-temperature limit. The current 
flowing from left to right in figure 1 is calculated as 

J, = e d E  n(E)v(E)lt(E) I i 
where integration is from EF - eV to E, if the bias is such that eV < EF, or from 0 to EF 
otherwise. In a ID system, and for each electron spin value, the following relations hold: 

n(E) = 2 n d k / d E  dE/dk = hv(E)  n(E) = l/hu(E) 

so 

For the sign of bias shown in figure 1, and for low temperatures J, = 0 for the lack of 
available final states. (Note that if t = 1 then J = e2/hV and the resistance is quantised: 
observed deviations from quantised values, in this formalism, are due to deviations from 

In figures 4(a), 4(b) and 4(c) we have plotted the J-V characteristics for single 
channels corresponding to the situation in figures 2(a),  2(b) and 3 rspectively. Several 
points are to be noted. (i) In the absence of any pinching off-i.e. raising the potential 
floor in the channel-the channel resistance is at its quantised value for eV E,, but 
already by the time eVis of order 20% of EF the resistance is beginning to rise from this 
value. (ii) The oscillating structure in t (k )  or t(E) as a function of bias is washed out in 
the integration for the linear potential drop: only with the introduction of a potential 
discontinuity in the model for pinching off do these length resonance effects survive, 

t = 1.) 
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and then only weakly. (iii) As the pinching off occurs, the resistance rises from its 
quantised value, very slowly at first (we do not reproduce the J-V curve for a 10% 
pinching off effect , as it is indistinguishable from that with no pinching off), but becoming 
appreciable once the rise in the potential floor is ~ 5 0 %  of E,. (iv) Most notable of all is 
the fact that once eV exceeds EF, the differential resistance goes negative: this should 
lead to current and voltage oscillations within the device. Since we are dealing with 
resistances of order 104Q and capacitances of order 10-18F, the possible frequencies 
of such oscillations are extremely high. (The increase in differential resistance, and 
instabilities in the J-V characteristics have been detected as the bias increases (Brown 
et a1 1989).) 

5. Discussion 

This calculation was initially set up to test the extent to which length resonance features 
in calculations of conductance were an artefact of discontinuities in the potential profile, 
or its first derivative (which they are totally). However, the results show a more inter- 
esting feature, namely negative differential resistance in the high-source-drain-bias 
regime. 

Provided that the constriction resistance is dominant in the measurement, as is the 
case in most studies, the effects described above should be clearly observable, although 
other effects of hot-carrier relaxation such as phonon emission and electron-electron 
interactions may produce further contributions to the resistance, reducing the magnitude 
of the effect predicted above. Strictly the equation for the current is 8 4 above should 
contain the Fermi occupation factorf(E, T ) ,  and the integral be taken to large positive 
energy. At finite temperatures there will be a reverse current from partially occupied 
states on the low-energy side: such a current will be small by a factor of at least exp( -eV/ 
k T )  reflecting the relative occupation of those initial states, and this will result in a small 
reduction of the magnitude of the negative differential resistance with temperature. 

Two theoretical points remain. The first is that our analysis assumes the potential 
varies strongly on the scale of an electron wavelength: otherwise a WKB-type analysis 
would result in exponentially small reflections. We note that the Fermi wavelength in 
the two-dimensional electron gas contact layers is ~ 0 . 0 5  pm. In a split-gate structure 
with multiple sub-band occupation, and part of the kinetic energy taken up as lateral 
quantum confinement energy, most electrons have wavelengths considerably in excess 
of this value. For split gates of length -0.1-0.3 pm, supporting a potential drop of 20- 
100 mV, the analysis presented in this paper applies. The second concerns space-charge 
and screening effects within and near the constriction, and the influence they have on the 
potential profile seen by the electron. Since the electron density within the constriction is 
quite low, the simple model in figure 1 is quite appropriate. 
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Appendix. Details of the calculation 

The matching of the wavefunction and its derivative in the linear potential drop model 
requires the evaluation of the Airy functions of argument -6zo and g(L - zo). If we 
denote by A B 1 ,  A ; ,  B; ,  the Airy functions of the first and second kind, and their first 
derivative with respect to the argument -ljzo, and equivalent terms with subscript 2 for 
the argument lj(L - zo), then 

t = (2ikE/n) exp(-ik'L)/[ -(C3 - kk'C2) + i(k'C1 - kc,)]  

where Cl = lj(A,B; - A ; B 2 ) .  C2 = (AlR2 -A$?, ) ,  C3 = E2(A;B; - A;B;)  and C4 = 
E(A,B; - A;Bl).  For the case where there is an added potential step, we merely shift 
the arguments of the Airy functions, as described in the text. 

In the case of the smooth potential, the methodology of Landau and Lifshitz (1977) 
is used, and with a series of definitions and substitutions: 

5: = tanh nz k2 = 2m"E/h2 k" = 2m*(E + Vo)/h2 E = ik/n 

the wavefunction (for z > 0) with the correct asymptotic value of exp(ik'z) for z + x is 

y(z) -- (1 - tanh2 nz)-'/* F [ - E  - s ,  - E  + s + 1 ,  - E  + 1,0.5(1 - tanh nz)]. 
This has to be matched at z = 0 to the wavefunction for z < 0, namely 

q ( z )  = exp(ikz) + r exp(-ikz). 

With 

91 = F ( - E  - S ,  - E  + s + 1 ,  - E  + 1,0.5) 

9; = [ @ ( E  + s ) ( - E  + s + 1 ) / 2 ( - ~  + ~ ) ] F ( - E  - s + 1 ,  - E  + s + 2, - E  + 2 ,0 .5 )  

the transmitted current is given by (k'/k) 12/(!31 + 9;/ik)I2. 

Note added inproof. The negative differential resistance has been obtained numerically for the wide-narrow- 
wide device geometry of Szafer and Stone (1988) and by Shent eta1 (1989, 1990). 
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